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Abstract

Purpose – To study the steady viscous incompressible electrically conducting fluid flow past a
circular cylinder under the influence of an external magnetic field at high Reynolds numbers (Re).

Design/methodology/approach – The finite difference method is applied to solve the governing
non-linear Navier-Stokes equations. First order upwind difference scheme is applied to the convective
terms. The multigrid method with coarse grid correction is used to enhance the convergence rate.
The defect correction technique is employed to achieve the second order accuracy.

Findings – A non-monotonic behavior in separation angle when N $ 5 and separation length when
N $ 3 is found with the increase of external magnetic field. The drag coefficient is found to increase
with increase of N. The pressure drag coefficient, total drag coefficient and rear pressure are found to
exhibit a linear dependence with N 0.5. The pressure Poisson equation is solved to find pressure fields
in the flow region. It is found that the upstream base pressure increases with increase of external
magnetic field while the downstream base pressure decreases with the increase of the external
magnetic field.

Originality/value – The non-monotonic behaviors in the separation angle and separation length at
high Re are explained through pressure fields which are found first time for this problem. The linear
dependence of the pressure drag coefficient, total drag coefficient and the pressure at rear stagnation
point with N 0.5 is in agreement with experimental findings.
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Paper type Research paper

1. Introduction
The structure of steady viscous incompressible flow over a circular cylinder at
high Reynolds number (Re) forms one of the classical problems in fluid mechanics.
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Some notable studies on this problem in the 1970s are given by Dennis and Chang
(1970), Takami and Keller (1969) and Robert Leigh Underwood (1969). They provided
solutions up to Re ¼ 10, 60 and 100, respectively. In Fornberg (1980) provided
numerical solutions for the steady viscous flow past a circular cylinder at Res up to 300
using Newton’s method. In Fornberg (1985) he further extended his approach to high
Res up to 600. He found that the wake bubble (region with recirculating flow) grows in
length approximately linearly with Re. The width increases like

ffiffiffiffiffi
Re

p
up to Re ¼ 300 at

which point a transition to linear increase with Re begins. At very high Res the wake
resembles a pair of translating, uniform vortices, both touching the center line. Later,
Fornberg (1988) studied the steady viscous flow past a sphere for the high Res
100 # Re # 5,000 using the Newton’s method. The steady flow past a rotating circular
cylinder is studied by Tang and Ingham (1991) at Res 60 and 100. The computation of
high Re flow around a circular cylinder with surface roughness is studied by
Kawamura and Kuwahara (1984). The physical analysis of the pressure and velocity
fields in the near wake of a circular cylinder is investigated by Braza et al. (1986).
Williamson studied oblique and parallel modes of vortex shedding in the wake of a
circular cylinder at low Res (Welliamson, 1989). It has been shown experimentally
(Norberg, 2003; Williamson, 1996a) and theoretically (Thompson and Le Gal, 2004) that
the flow about a circular cylinder becomes unstable at around Re ¼ 47 where Hopf
bifurcation occurs leading to periodic shedding of vortices from the upper and lower
side of the cylinder. Jackson (1987) showed that the first instability leading to the von
Karman vortex street arises at Re , 49. The nature of the secondary instability
towards a spanwise-periodic 3D flow at Re , 188 is also investigated (Henderson and
Barkely, 1996; Williamson, 1996b). Lima E Silva et al. (2003) simulated this problem
using the immersed boundary method.

1.1 Effect of magnetic field on the flow
It is well known that the effect of a suitable magnetic field on an electrically conducting
fluid controls the growth of a boundary layer which is an undesirable flow feature in
many engineering cases. The boundary layer separation causes increase of drag and
diminished pressure recovery which are hurdles to many practical applications,
especially with regard to transport in fluids. Therefore, a lot of attention is given by
researchers to control the flow separation. Recent experimental works in this area can
be found in Weir et al. (1998, 2000, 2001, 2003). Greenblatt and Wyganski (2000)
studied the control of flow separation using periodic excitation. Bae et al. (2001)
investigated the suppression of Karmann vortex excitation of a circular cylinder by a
second cylinder set downstream in a cruciform arrangement. Recently, Baranyi (2003)
studied the unsteady momentum and heat transfer from a fixed cylinder in an aligned
magnetic field. Raghava Rao and Sekhar (1993, 1995) found the suppression of
separation in the rotating flow past a sphere. They found vortex jump phenomena at
higher Res and Taylor numbers. Experimentally Lahjomri et al. (1993) established
that two-dimensional instability (vortex shedding) can be suppressed. There is a view
in magnetohydrodynamics that constant (steady) magnetic field can damp any
instabilities, something that is found in metallurgical or crystal growth applications.
For the flow past a cylinder in an aligned magnetic field (Mutschke et al., 1998)
has shown that the magnetic field influences 2D and 3D instabilities in a different
way and three-dimensional steady flow does exist (Mutschke et al., 1997).
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Later Mutschke et al. (2001) further discussed the scenario of three-dimensional
instabilities in the magnetohydrodynamic cylinder flow when the oncoming flow and
the magnetic field are parallel. They found a non monotonic behavior of the 3D
instability when the strength of the magnetic field is increased. All known
experimental results about 2D stability are restricted to relatively high Re because of
serious measuring problems in liquid mental flows. Maxworthy (1968) achieved
pressure distribution measurements around a sphere placed in a sodium flow aligned
with the magnetic field at infinity. For an interaction parameter ranging from 0 to 40 he
concluded that the upstream pressure initially rises continuously as N increases and
reaches an asymptotic value when N . 15, placing a limit on the upstream zone
contribution to the sphere pressure drag. Meanwhile, the downstream base pressure as
N increase due to the loss in total pressure head a fluid particle undergoes, when
crossing the magnetic field. The association of these two phenomena is consequently
responsible for an increase with N of the pressure drag coefficient which was found
proportional to

ffiffiffiffi
N

p
when N . 5. A similar behavior has also been reported by Yonas

(1967), who made direct drag measurements on spheres and disks in a sodium flow for
interaction parameter values up to 80. The fact that the asymptotic dependence with N
of the drag coefficient seems to be independent of the shape of the body is probably one
of the most important results of Maxworthy’s and Yonas’ study. Josserand et al. (1993)
in their experimental work on a cylinder in a liquid metal flow, studied the angular
evolution of the pressure around a cylinder in an MHD flow aligned with the magnetic
field for value of the interaction parameter between 0 and 8. Recently using numerical
simulation Sekhar et al. (2005) investigated the steady incompressible flow around a
sphere in an aligned magnetic field and the result concur with the findings of
Maxworthy, Yonas and Josserand et al. In this paper we consider the incompressible
flow around a circular cylinder with a magnetic field aligned with the flow at infinity
for the range of Re between 100 and 500 and with an interaction parameter up to 12.
The vorticity-stream function formulation of the Navier-Stokes equations is used and
solved with finite difference method. The multigrid method with defect correction
technique is employed to achieve the second order accurate solution.

2. Formulation of the problem
The governing equations for the steady state, viscous and incompressible
magnetohydrodyamic axisymmetric flow is solved in the cylindrical coordinate
system. The free stream velocity is U1 is from left to right and the applied magnetic
field H is parallel to this flow. The viscosity, conductivity, density and permeability of
the fluid are h, s, r, and m, respectively, and the radius of the cylinder is a. The curl of
the momentum equation and the equation of continuity in the non-dimensional
form are:

72v ¼
Re

2
½7 £ ðv £ qÞ�2

NRe

2
½7 £ {ðq £HÞ £H}� ð1Þ

in which:

v ¼ 7 £ q ð2Þ

7 · q ¼ 0 ð3Þ
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where q is the fluid velocity and v is the vorticity. The Re is given by Re ¼
2rU1a=h and N ¼ sH 2

1a=rU1 is the interaction parameter. The following
non-dimensional terms are substituted to obtain the dimensionless differential
equations:

q ¼
q0

U1

; p ¼
a

rnU1

p0; r ¼
r0

a
; H ¼

H0

H1

E ¼
E0

E1

; j ¼
j0

j1

where primed variables are dimensional quantities and v is the kinematic viscosity,
E1 and j1 are the magnitudes of electric field intensity and current density at
infinity, respectively. The dimensionless stream function c(r,u) is introduced so
that the equation of continuity (equation (3)) is satisfied:

qr ¼
1

r

›c

›u
; qu ¼ 2

›c

›r
ð4Þ

where qr and qu are the dimensionless radial and transverse components of fluid
velocity.

The polar coordinates (r,u) are used in such a way that the flow is symmetric about
u ¼ 08 and u ¼ 1808. As the magnetic field and fluid flow are aligned at infinity, the
electric field can be assumed to be zero. The problem is simplified by assuming the
magnetic Re to be small (Rm p 1, where, Rm is defined as the ratio of the induced
magnetic field to the imposed magnetic field) so that the magnetic field can be taken as
a constant, given by:

H ¼ ð2cos u; sin u; 0Þ ð5Þ

This simplification will eliminate nonlinear terms of unknown quantities in the
Maxwell’s equations. Substitution of equation (4) in equations (2) and (4), equation (5)
in equation (1) with the transformation r ¼ epj and u ¼ ph yields, in the
vorticity-stream function form as follows:

›2c

›j 2
þ

›2c

›h 2
þ p 2e2pjv ¼ 0 ð6Þ

›2v

›j 2
þ

›2v

›h2
2

Re

2

›c

›h

›v

›j
2

›c

›j

›v

›h

� �

¼
NRe

2
p 2e2pjv sin 2ðphÞ þ sin 2ðphÞ

›2c

›j›h

�

2p sin 2ðphÞ
›c

›h
2 cos 2ðphÞ

›2c

›j 2
þ p cos 2ðphÞ

›c

›j

�
ð7Þ

Equations (6) and (7) must now be solved subject to the following boundary
conditions.
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On the surface of the cylinder ðj¼ 0Þ : c¼ ›c=›j¼ 0; v¼2ð1=p 2Þ ð›2c=›j 2Þ

At large distances from the cylinder ðj!1Þ : c , epj sinðphÞ; v! 0

Along the axis of symmetry ðh ¼ 0 and h ¼ 1Þ : c ¼ 0; v ¼ 0

The following pressure Poisson equation, which is obtained by taking the
divergence of the Navier-Stokes equations, is then solved to find the pressure in the
flow field.

2ð pjj þ phhÞ ¼
2

r 2p 2
ðcjh 2 pchÞ

2 2 ðcjj 2 pcjÞðchh þ pcjÞ
� �

þ

N

r 2p2

sinð2phÞ

2
ðcjj 2 chh 2 2pcjÞ þ cosð2phÞðcjh 2 pchÞ

� �

with boundary conditions

On the surface of the cylinder ðj ¼ 0Þ : pj ¼ 2ð2=ReÞvh

At large distances from the cylinder ðj!1Þ : p ¼ 1

Along the axis of symmetry ðh ¼ 0 andh ¼ 1Þ : ph ¼ 0.

3. Numerical method
The coupled nonlinear Navier-Stokes equations are solved by applying finite difference
method and the resulting algebraic equations are solved by using the multigrid
method.

Here, a recursive multigrid procedure is employed in which the smoother is a point
Gauss Seidel iteration and the usual coarse grid correction is applied (Juncu, 1999).

The initial solution is taken as c ¼ 0 and v ¼ 0 at all inner grid points except for c
at j ¼ 1 where the boundary condition holds. In finding the solution for higher
values of Re and N, the solution obtained for lower values of Re and N are used as
starting solution. Convergence is said to have been achieved when the difference
between two successive iterations m and m þ 1, at all interior grid points, is less than
1027, i.e.:

jcmþ1 2 cmj , 1027 and jvmþ1 2 vmj , 1027:

We used the injection operator as restriction operator throughout this study. For the
prolongation operator the simplest from is derived using linear interpolation. The
9-point prolongation operator defined by Wesseling (1980) is used for the present
study.

The solution obtained by the above method is not second order accurate as we have
approximated all terms by second order central differences except convective terms
which are approximated by first order upwind difference scheme to ensure diagonal
dominance. In order to achieve second order accurate solution, the defect correction
method is employed as follows. For example, if B is the operator obtained by first order
upwind discretization and A is that obtained by second order accurate discretization,
then defect correction algorithm (Juncu, 1999) works as given below. At the start of
defect correction, �y is a solution that is not second order accurate, and at the end
of defect correction, �y is second order accurate.
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begin Solve B�y ¼ b

for i U 1 step 1 until n do

solve By ¼ b2 A�yþ B�y

�y U y

od

end

Usually, in practice, it is sufficient to take n ¼ 1 or 2.

4. Results and discussions
The second order accurate results are obtained from the finest grid 512 £ 512 when
N , 1 and 1,024 £ 1,024 when N $ 1. The effect of magnetic field on the streamlines
for Re ¼ 100, 300 and 500 are shown in Figures 1-3, respectively. It is evident from
these figures that the applied magnetic field delays (suppresses) the separation at rear
stagnation point, and that suppression of the recirculation bubble is not complete.
A non-monotonic behavior in recirculation length is found when N $ 3 and in
separation angle when N $ 5 for all Re considered in this study as shown in Figure 4.
For Re ¼ 100 the recirculation length decrease up to N ¼ 2 and then slowly increases
up to N ¼ 12. For Re ¼ 300 and 500 the recirculation length decreases up to N ¼ 2 and
then increases up to N ¼ 6 and again decreases with increase of magnetic field. The
boundary layer separation angle initially decreases until N ¼ 5 and then increases

Figure 1.
Streamlines for Re ¼ 100,
N ¼ 0.2, 2, 6 and 12 (top to

bottom)
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Figure 2.
Streamlines for Re ¼ 300,
N ¼ 0.2, 2, 6 and 12 (top to
bottom)

Figure 3.
Streamlines for Re ¼ 500,
N ¼ 0.2, 2, 6 and 12 (top to
bottom)
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when N . 5. It is observed that as magnetic field increases (higher values of N),
the flow becomes straightened in the main stream direction and the curvature of the
recirculation bubble (i.e. c ¼ 0) decreases. The flow inside the recirculation bubble
slows down monotonically with increasing magnetic field. As the magnetic forces
are proportional to and resist the flow of fluid in any other direction than that of the
unperturbed magnetic field near the cylinder, they produce changes in the pattern of
the vorticity lines. The length of the standing vortex is reduced and the strength of the
disturbance upstream and downstream of the cylinder is increased with increasing
magnetic field. Also, a growing inviscid rotational region is found at higher values of N
which is predicted theoretically (Banks and Zaturska, 1984; Leibovich, 1967). These
features can be seen from the figures of iso-vorticity contours as shown in Figure 5 for
Re ¼ 500. It is clear from Figure 6 that the magnetic field tends to suppress the surface
vorticity behind the cylinder.

Figure 4.
Dependance of

recirculation length l and
separation angle u on

interaction parameter N
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It is found that the upstream base pressure increases continuously with increase of N,
while downstream base pressure decreases with increase of N. The angular evolution
of the surface pressure is shown in Figure 7. The pressure at rear stagnation point is
found to decrease with interaction parameter as

ffiffiffiffi
N

p
for N $ 6 (Figure 8). These results

agree with the experimental results of Josserand et al. (1993). From the plots of angular
evolution of surface pressure, the increase of front pressure around the front stagnation
point is in line with the hypothesis of Maxworthy (1968, 1969) and Josserand et al.
(1993) that a stagnant flow develops upstream of the sphere when the magnetic field is
increased.

The surface pressure in the upstream zone is approaching an asymptotic value at
higher magnetic fields (N $ 10). Such observation is also experimentally reported
(Maxworthy, 1968). The isocontours of pressure fields around the cylinder for
Re ¼ 100, 300 and 500 are shown in Figures 9-11, respectively. From these figures it is
evident that with increase of magnetic field the pressure is diminished, recovered and
again started diminishing in the downstream zone. These pressure changes are
responsible for the non-monotonic behavior of the recirculation length and separation
angle observed. The radial and transverse velocity components at u ¼ 908 is given in
Figure 12 for Re ¼ 500.

Figure 5.
Isocontours of vorticity for
Re ¼ 500, N ¼ 1 (top) and
N ¼ 8 (bottom)
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The drag coefficient is calculated using the following relations:

Viscous drag coefficient CV ¼ 2
4p

Re

Z 1

0

vj¼0 sinðphÞdh ð8Þ

Pressure drag coefficient CP ¼
4

Re

Z 1

0

›v

›j

� �
j¼0

sinðphÞdh ð9Þ

Total drag coefficient CD ¼ CV þ CP ð10Þ

The numerical values of the total drag coefficients obtained in 1,024 £ 1,024 grid for
different values of N are tabulated in Table I. The values obtained in 512 £ 512 grid

Figure 6.
Angular evolution of
surface vorticity for
Re ¼ 100 and 500
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are also presented to show grid independence. The pressure drag coefficient CP and
viscous drag coefficient CV as a function of interaction parameter is shown in Figure 13.
From this figure, it can be observed that the pressure drag coefficient increases more
rapidly than viscous drag coefficient. The total drag coefficient increases continuously
with increase of magnetic field as shown in Figure 14. The constant decrease of the
base pressure for high N is the major source of the increase in the overall drag
coefficient CD. For these values of N, the loss in total pressure suffered along the front
streamlines under the effect of the j £ B forces are responsible for the rear pressure
drop. The pressure drag coefficient CP and the total drag coefficient CD are found to
increase with interaction parameter as

ffiffiffiffi
N

p
when N $ 6. This behavior can be seen in

Figure 8. The linear dependence with
ffiffiffiffi
N

p
of the pressure drag coefficient and total

drag coefficient is in accordance with the experimental findings (Maxworthy, 1968;
Yonas, 1967; Josserand et al., 1993).

Figure 7.
Angular evolution of
surface pressure for
Re ¼ 100, and 500
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Figure 8.
Linear dependance of

pressure drag coefficient
CP, total drag coefficient
CD and the rear pressure

p(0,0) on
ffiffiffiffi
N

p
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Figure 9.
Pressure fields for the flow
with Re ¼ 100 and
N ¼ 0.2, 2, 6 and 12 (top to
bottom)
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Figure 10.
Pressure fields for the flow

with Re ¼ 300 and
N ¼ 0.2, 2, 6 and 12 (top to

bottom)
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Figure 11.
Pressure fields for the flow
with Re ¼ 500 and
N ¼ 0.2, 2, 6 and 8 (top to
bottom)
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Figure 12.
Variation of radial u and
transverse v components

of velocity as a function of
radial distance, r (far-field
distance) for the flow with

Re ¼ 500 at u ¼ 908

Re ¼ 100 Re ¼ 300 Re ¼ 500
N 512 £ 512 1,024 £ 1,024 512 £ 512 1,024 £ 1,024 512 £ 512 1,024 £ 1,024

1 1.515 1.517 1.134 1.142 0.958 0.969
2 1.824 1.825 1.367 1.373 1.126 1.135
3 – 2.035 1.509 1.514 1.244 1.253
4 – 2.207 1.624 1.626 1.332 1.340
5 – 2.368 1.722 1.726 – 1.441
6 – 2.530 1.816 1.821 – 1.510
7 – 2.670 – 1.942 – 1.580
8 – 2.814 – 2.056 – 1.631
9 – 2.930 – 2.140 – –

10 – 3.030 – 2.180 – –
12 – 3.246 – 2.298 – –

Table I.
Drag coefficient, CD

values in 512 £ 512 and
1,024 £ 1,024 grids

Flow around a
circular cylinder

755



5. Conclusions
The effect of the aligned magnetic field on the steady viscous incompressible
and slightly conducting fluid past a circular cylinder is studied at high Res using
finite difference method. The pressure Poisson equation is solved to find pressure
fields in the flow region. The drag coefficient is found to increase with increase of
N. The pressure drag coefficient, total drag coefficient and rear pressure are found
to exhibit a linear dependance with

ffiffiffiffi
N

p
. A non-monotonic behavior in separation

angle and separation length is found with the increase of external magnetic field,
which is explained using pressure fields. The upstream base pressure is found to
increase with increase of N while the downstream base pressure decreases with
increase of N.

Figure 13.
Variation of viscous drag
coefficient CV and
pressure drag coefficient
CP as a function of
interaction parameter N
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Kármán vortex excitation of a circular cylinder by a second cylinder set downstream in

cruciform arrangement”, J. Comp. Appl. Mech., Vol. 2, pp. 175-88.

Banks, W.H.H. and Zaturska, M.B. (1984), “The flow of a electrically conducting fluid at a rear

stagnation point”, Z für Ang. Math. Physik, Vol. 35, pp. 72-80.

Baranyi, L. (2003), “Computation of unsteady momentum and heat transfer from a fixed cylinder

in laminar flow”, J. Comp. Appl. Mech., Vol. 4, pp. 13-25.

Braza, M., Chassaing, P. and Minh, H.H. (1986), “Numerical study and physical analysis of the

pressure and velocity fields in the near wake of a circular cylinder”, J. Fluid Mech., Vol. 165,

pp. 79-130.

Figure 14.
Variation of total drag

coefficient CD as a function
of interaction parameter N

(top) and Re (bottom)

Flow around a
circular cylinder

757



Dennis, S.C.R. and Chang, G.Z. (1970), “Numerical solutions for steady flow past a circular
cylinder at Reynolds numbers up to 100”, J. Fluid Mech., Vol. 42, pp. 471-89.

Fornberg, B. (1980), “A numerical study of steady viscous flow past a circular cylinder”, J. Fluid
Mech., Vol. 98, pp. 819-55.

Fornberg, B. (1985), “Steady viscous flow past a circular cylinder upto Reynolds numbers 600”,
J. Comp. Phys., Vol. 61, pp. 297-320.

Fornberg, B. (1988), “Steady viscous flow past a sphere at high Reynolds numbers”, J. Fluid.
Mech., Vol. 190, pp. 471-89.

Greenblatt, D. and Wyganski, I.J. (2000), “The control of flow separation by periodic excitation”,
Prog. Aero. Sci., Vol. 36, pp. 487-545.

Henderson, R.D. and Barkely, D. (1996), “Secondary instability in the wake of a circular cylinder”,
Phys. Fluids, Vol. 8, pp. 1683-5.

Jackson, C.P. (1987), “A finite-element study of the onset of vortex shedding in flow past
variously shaped bodies”, J. Fluid Mech., Vol. 182, pp. 23-45.

Josserand, J., Marty, Ph. and Alemany, A. (1993), “Pressure and drag measurements on a cylinder
in a liquid metal flow with an aligned magnetic field”, Fluid Dynamic Research, Vol. 11,
pp. 107-17.

Juncu, G.H. (1999), “A numerical study of steady viscous flow past a fluid sphere”, Int. J. Heat and
Fluid Flow, Vol. 20, pp. 414-21.

Kawamura, T. and Kuwahara, K. (1984), “Computation of high Reynolds number flow around a
circular cylinder with surface roughness”, Proceedings of the 22nd Aerospace Sciences
Meeting, Reno, Nevada, AIAA-84-0340, pp. 1-11.

Lahjomri, J., Caperan, P. and Alemany, A. (1993), “The cylinder wake in a magnetic field aligned
with the velocity”, J. Fluid Mech., Vol. 253, pp. 421-48.

Leibovich, S. (1967), “Magnetohydrodynamic flow at a rear stagnation point”, J. Fluid Mech.,
Vol. 29, pp. 401-13.

Lima E Silva, A.L.F., Silveira-Neto, A. and Damasceno, J.J.R. (2003), “Numerical simulation of
two-dimensional flows over a circular cylinder using the immersed boundary method”,
J Comp. Phys., Vol. 189, pp. 351-70.

Maxworthy, T. (1968), “Experimental studies in magneto-fluid dynamics: pressure distribution
measurements around a sphere”, J. Fluid Mech., Vol. 31, pp. 801-14.

Maxworthy, T. (1969), “Experimental studies in magneto-fluid dynamics: flow over a sphere with
a cylindrical afterbody”, J. Fluid Mech., Vol. 35, pp. 411-6.

Mutschke, G., Gerbeth, G. and Shatrov, V. (1997), “Two- and three-dimensional instabilities of the
cylinder wake in an aligned magnetic field”, Phys. Fluids, Vol. 9, pp. 3114-6.

Mutschke, G., Gerbeth, G., Shatrov, V. and Tomboulides, A. (2001), “The scenario of
three-dimensional instabilities of the cylinder wake in an external magnetic field: a linear
stability analysis”, Phys. Fluids, Vol. 13, pp. 723-34.

Mutschke, G., Shatrov, V. and Gerbeth, G. (1998), “Cylinder wake control by magnetic fields in
liquid metal flows”, Expt. Thermal and Fluid Sci., Vol. 16, pp. 92-9.

Norberg, C. (2003), “Fluctuating lift on a circular cylinder: review and new measurements”,
J. Fluids and Structures, Vol. 17, pp. 57-96.

Raghava Rao, C.V. and Sekhar, T.V.S. (1993), “Numerical solution of the slow translation of a
sphere moving along the axis of a rotating viscous fluid”, Comp. Fluid Dyn., Vol. 1,
pp. 351-9.

HFF
16,6

758



Raghava Rao, C.V. and Sekhar, T.V.S. (1995), “Translation of a sphere in a rotating viscous
fluid – a numerical study”, Int. J. Numer. Methods in Fluids, Vol. 20, pp. 1253-62.

Robert Leigh Underwood (1969), “Calculation of incompressible flow past a circular cylinder at
moderate Reynolds number”, J. Fluid Mech., Vol. 37, pp. 95-114.

Sekhar, T.V.S., Sivakumar, R. and Ravi Kumar, T.V.R. (2005), “Magnetohydrodynamic flow
around a sphere”, Fluid Dynamics Research, Vol. 37, pp. 357-73.

Takami, H. and Keller, H.B. (1969), “Steady two-dimensional viscous flow of an incompressible
fluid past a circular cylinder”, Phys. Fluids, Vol. II, pp. 51-6.

Tang, T. and Ingham, D.B. (1991), “On steady flow past a rotating circular cylinder at Reynolds
numbers 60 and 100”, Computers & Fluids., Vol. 19, pp. 217-30.

Thompson, M.C. and Le Gal, P. (2004), “The Stuart-Landau model applied to wake transition
revisited”, European J. Mech B/Fluids, Vol. 23, pp. 219-28.

Weir, T., Fey, U., Gerbeth, G., Mutschke, G. and Avilov, V. (2000), “Boundary layer control by
means of electromagnetic forces”, Eur. Res. Community on Flow, Turbulence and
Combustion (ERCOFTAC) Bull., Vol. 44, pp. 36-40.

Weir, T., Fey, U., Gerbeth, G., Mutschke, G., Lielausis, O. and Platacis, E. (2001), “Boundary layer
control by means of wall parallel Lorentz forces”, Magnetohydrodynamics, Vol. 37 Nos 1/2,
pp. 177-86.

Weir, T., Gerbeth, G., Mutschke, G., Lielausis, O. and Lammers, G. (2003), “Control of flow
separation using electromagnetic forces”, Flow, Turbulence and Combustion, Vol. 71,
pp. 5-17.

Weir, T., Gerbeth, G., Mutschke, G., Platacis, E. and Lielausis, O. (1998), “Experiments on
cylinder wake stabilization in an electrolyte solution by means of electromagnetic forces
localized on the cylinder surface”, Exp. Thermal Fluid Sci., Vol. 16, pp. 84-91.

Welliamson, C.H.K. (1989), “Oblique and parallel modes of vortex shedding in the wake of a
circular cylinder at low Reynolds number”, J. Fluid Mech., Vol. 206, pp. 579-627.

Wesseling, P. (1980), Report NA-37, Delft University of Technology, The Netherlands.

Williamson, C.H.K. (1996a), “Vortex dynamics in the cylinder wake”, Ann. Rev. Fluid Mech.,
Vol. 28, pp. 477-539.

Williamson, C.H.K. (1996b), “Model a secondary instability in wake transition”, Phys. Fluids,
Vol. 8, pp. 1680-2.

Yonas, G. (1967), “Measurements of drag in a conducting fluid with an aligned magnetic field and
large interaction parameter”, J. Fluid Mech., Vol. 30, pp. 813-21.

Corresponding author
T.V.S. Sekhar can be contacted at: sekhartvs@yahoo.co.in

To purchase reprints of this article please e-mail: reprints@emeraldinsight.com
Or visit our web site for further details: www.emeraldinsight.com/reprints

Flow around a
circular cylinder

759


